C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells
نویسندگان
چکیده
The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 - ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.
منابع مشابه
The putative capsid protein of the newly identified avian hepatitis E virus shares antigenic epitopes with that of swine and human hepatitis E viruses and chicken big liver and spleen disease virus.
We recently identified a novel virus, designated avian hepatitis E virus (avian HEV), from chickens with hepatitis-splenomegaly (HS) syndrome in the USA. We showed that avian HEV is genetically related to swine and human HEVs. Here we report the antigenic cross-reactivity of the putative open reading frame 2 (ORF2) capsid protein of avian HEV with those of swine and human HEVs and the Australia...
متن کاملCharacterization of Two Novel Linear B-Cell Epitopes in the Capsid Protein of Avian Hepatitis E Virus (HEV) That Are Common to Avian, Swine, and Human HEVs.
UNLABELLED Antisera raised against the avian hepatitis E virus (HEV) capsid protein are cross-reactive with human and swine HEV capsid proteins. In this study, two monoclonal antibodies (MAbs) against the avian HEV capsid protein, namely, 3E8 and 1B5, were shown to cross-react with the swine HEV capsid protein. The motifs involved in binding both MAbs were identified and characterized using pha...
متن کاملCloning and expression of hepatitis E virus ORF2 as a vaccine candidate
Introduction: Hepatitis E virus (HEV) is a fecal-oral transmitting virus which causes a chronic liver disease. ORF2 is an immunogen capsid protein of HEV that has been proposed to be used for Hepatitis E vaccine design. It is a 660-amino acid protein which includes an immunogenic region (residues 112-607). This protein has been expressed in complete and truncated forms, using different expressi...
متن کاملA C-terminal hydrophobic region is required for homo-oligomerization of the hepatitis E virus capsid (ORF2) protein
Hepatitis E virus (HEV) is the causative agent of hepatitis E, an acute form of viral hepatitis. The open reading frame 2 (ORF2) of HEV encodes the viral capsid protein, which can self-oligomerize into virus-like particles. To understand the domains within this protein important for capsid biogenesis, we have carried out in vitro analyses of association and folding patterns of wild type and mut...
متن کاملIdentification and characterization of the viral interaction determinant of the subgroup A avian leukosis virus receptor.
The cellular receptor for subgroup A avian leukosis viruses (ALV-A) has a small, 83-amino-acid extracellular domain containing a motif that is related in sequence to the ligand binding repeats of the low-density lipoprotein receptor. Extensive mutagenesis of the ALV-A receptor has identified two acidic amino acids (Asp-46 and Glu-47) and an adjacent aromatic amino acid (Trp-48) in the carboxy-t...
متن کامل